

AI in Library and Information Centers: A New Era of Knowledge Management

Dr. Vishnu Kumar Gupta

Assistant Professor,

Department of Library and Information Science,

University of Rajasthan, Jaipur

vishnu5966@gmail.com

Abstract

The chapter examines how artificial intelligence is changing the operations of Library and Information Centers, particularly the knowledge management, resource discovery, and interaction between the user and the system. It follows the development of libraries in terms of traditional cataloging and classification units to digitization and automated metadata generation as the basis of AI integration. The chapter discusses AI technologies including machine learning, natural language processing, recommendation systems and intelligent information retrieval, and it elaborates how their usage in libraries improves library operations and user personal experiences. It also mentions the use of AI to create knowledge management (such as automatic metadata generation, prediction of resources management, intelligent reference assistance) and covers the ethical, legal, and social concerns (data privacy, copyright, transparency, and equal access). Finally, the chapter offers the directions of the future, which consists of developing human-friendly, comprehensible AI systems to develop adaptive, efficient, and dynamic library ecosystems.

Keywords: Artificial Intelligence, Library and Information Centers, Knowledge Management, Machine Learning, Natural Language Processing, Recommendation Systems.

1. Introduction

The field of Library and Information Science (LIS) has been transformed

considerably over the past decades as it has undergone the transition of similar cataloging and classification into the use of digital and automated technologies.

The early authors focus on the history of LIS research and professional practice, such as systematic classification, such as the Dewey Decimal system and impacts of collection analysis in resource development (Jarvelin and Vakkaris, 1993; Lund and Agbaji, 2018; Perrault, 1999). The libraries have found themselves in the grey frontier of human knowledge and computerized processes to decide the accessibility of information when the digitization movement began, as did the electronic resource management, and the problems of metadata generation (Terras, 2011; McCracken, 2008; Randtke, 2013). Artificial intelligence (AI) is the next significant frontier in knowledge management, which is based on these changes.

The breakthroughs in natural language processing, predictive analytics, and intelligent search technology are the basis of AI development of libraries. Some of the technologies that are broadening the spectrum of cataloging and discovery include automated subject indexing, ontology-based semantic interpretation and multimedia semantic search (Golub, 2021; Tran et al., 2007; Nandzik et al., 2013; Moens, 2002). Similarly, collaborative filtering systems, chatbots, and systems based on deep learning are also being reinvented with the help of AI to change the relationship between the user and access to information resources

(Li et al., 2005; Fry and Rich, 2011; Vallabhaneni et al., 2024; Labadze et al., 2023). At the same time, advances in knowledge graphs, big data indexing, and predictive cloud management demonstrate the ways in which AI could be applied to streamline the back-end procedures and front-end services of libraries and make them more efficient, scalable, and user-friendly (Gani et al., 2016; Tiwari et al., 2021; Balaji et al., 2018).

In addition to these opportunities, there are new ethical, legal and socio-economic challenges presented by AI implementation in Library and Information Centers (LICs). The problems of personalization, a balance of transparency and automation, and fair access reveal that there is a necessity to adopt structures that will establish data privacy, explainability and user trust (Camarinha-Matos et al., 1997; Balasubramaniam et al., 2022; Vallabhaneni et al., 2024). At the same time, one should minimize the role of human error and reduce data overload to ensure meaningful user experiences (Dalijono et al., 2006; Antoniou and Tringides, 2023). As AI-based knowledge management advances, it is increasingly apparent how it will assist libraries in becoming more diverse, interactive learning and research environments (Boyle and Ravenscroft, 2012; Agarwal et al., 2025; Doshi and Virparia, 2025).

2. Literature Review

The development of library and information science has been characterized by major changes in the methods of organizing and retrieving the contents. This trend was already observed in early research, including that by Järvelin and Vakkari (1993) which made systematic use of content analysis of journal articles to show the trend in the research focus and method. The library classification systems, especially the Dewey Decimal Classification have played a seminal role in the organization of knowledge and current evaluations of Lund and Agbaji (2018) have shown that they remain applicable in academic libraries of the United States. The same is true of parallel work in collection analysis, as addressed by Perrault (1999), the focus of which is on evaluating and optimizing library collections, and McCracken (2008) and Terras (2011) examine the issues and opportunities of the transition to digital resources, encompassing access, description, and processes of digitization.

Metadata creation and indexing as well as personal delivery of information have been more affected by automation and artificial intelligence. Randtke (2013) and Golub (2021) outline the opportunities and traps of automated metadata and subject indexing and demonstrate how

AI-based solutions can allow much more efficiency with the same quality level. Moens (2002) and Tran et al. (2007) highlight similar methods of semantic and ontology-based approaches to enhance the accuracy of the retrieval process, whereas Maynard et al. (2017) and Tiwari et al. (2021) demonstrate how natural language processing and knowledge graph can be combined to facilitate semantic search and decision making. Possible technological improvements in predictive analytics, discussed by Pradhan et al. (2024) and Balaji et al. (2018) and cloud resource management similarly facilitate the scalable and efficient processing of large data volumes, which is also a part of the wider trends towards automation and intelligent system design (Camarinha-Matos et al., 1997; Kaklauskas, 2014).

The coming together of AI, automation, and human-centered solutions made the process of information search and research productiveness different. Research like Jeelani et al. (2018) and Vallabhaneni et al. (2024) emphasize the use of AI in individual training and recommendation systems, and Fry and Rich (2011) call on the usability testing to play an important role in e-resource discovery. The current literature reviews by Labadze et al. (2023) and Agarwal et al. (2025) highlight the disruptive effect of AI on educational and business research processes, such as improvements in

productivity and quality. The ethical aspects and explainability of AI systems (Balasubramaniam et al. 2022) are the indications of the increasing necessity to find the golden mean between automation and transparency and human control, being able to make AI-based solutions effective and responsible.

3. The Evolution of Library and Information Centers

The development of Library and Information Centers (LICs) is an indication of more general shifts in how society's structure and store and acquire knowledge. In the past, LICs were physical repositories, with a high level of focus on organized cataloguing and classification regime so that they could have systematized access to information (Järvelin and Vakkari, 1993). These roles have over the years been redefined due to technological changes and digitalization of resources which have moved LICs to digital and hybrid models of knowledge management.

3.1. Traditional Knowledge Management Practices

Traditional LICs used a tremendous amount of structure in cataloging and classification to ensure order and ease of retrieval. The Dewey Decimal Classification (DDC) and the Library of Congress Classification (LCC) have been at the heart of the effort to offer standardized systems to group materials

according to subject and format (Lund and Agbaji, 2018). Metadata creation and manual indexing were also important affairs since they entailed careful work by librarians to explain, classify, and interconnect resources with the requirements of users (Randtke, 2013).

Although these methods laid a ground in the information retrieval, it was limited in nature. There were very cumbersome and human resource intensive in the cataloging and updates. Human error was also an issue, in that inconsistencies in indexing may cause misclassification or trouble finding resources. Also, the conventional methods were not very personalized, and it was difficult to focus resources on the research interests or behavioral patterns of separate users (Jeelani, Han, and Albert, 2018).

3.2. Digitization and the Rise of Digital Libraries

Digital technologies have brought about the replacement of traditional libraries with digital libraries that involve electronic catalogs, e-books and online databases (Terras, 2011). Digitization has many benefits such as ease of access, because digital resources can be accessed remotely; search efficiency, with the use of key-word searches and full-text searches; and sustainable storage, since digital materials are not physically damaged by cracks and fading (McCracken, 2008).

Nevertheless, the transition to digital has some issues as well. The problem of information overload may also overwhelm users as huge amounts of digital content are stored, and it may be hard to find the appropriate resources (Antoniou and Tringides, 2023). Resource discovery and retrieval may be hampered by metadata discrepancies which are frequently caused by heterogeneous digital sources (Randtke, 2013). Besides, the changing user expectations require a more personalized and context-sensitive service, which forces LICs to turn to intelligent systems and automated tools to preserve quality and relevance in the digital era (Jeelani, Han, and Albert, 2018).

4. AI Technologies Transforming LICs

There are also some problems with the shift towards digital. Information overloading issue can also flood the user as large quantities of digital data are accumulated and it can be difficult to locate the right materials (Antoniou and Tringides, 2023). The heterogeneous digital sources often pose a problem since they may create metadata discrepancies that impede resource discovery and retrieval (Randtke, 2013). Along with that, the evolving user expectations necessitate a more tailored and context-driven service, and it compels LICs to resort to smart systems and automation tools in order to maintain quality and

relevance in the digital age (Jeelani, Han, and Albert, 2018).

4.1. Artificial Intelligence in Libraries.

It is applying machine learning (ML) when automating library services and when learning the ways its users act. Predictive analytics can anticipate user needs, guide resources to be managed and improve the effectiveness of service delivery. On the example, the edge resource utilization frameworks (reinforcement learning) can be applied in dynamic offloading of tasks, and predicting resources in a library computing system (Pradhan, Tripathy, and Matam, 2024).

ML can also be used to automatically classify books, journals and multimedia resources. The content and metadata are analyzed by the ML algorithms to classify the resources more efficiently than manual indexing that was previously employed (Nandzik et al., 2013). Also, the trend analysis that is aided by ML can be used in the development of collections to enable libraries to forecast demand, identify gaps, and refine acquisition strategies (Perrault, 1999).

4.2. Semantic Understanding of Natural Language Processing (NLP).

NLP can be employed to enable LICs to handle text information on a scale and comprehend it. Automation of indexing, summaries, and content-extracting are

applications that help the libraries to process massive volumes of online content and generate useful metadata to find it (Golub, 2021).

It is possible to support people with the help of chatbots and virtual reference assistants that are based on NLP that can answer questions, provide navigation of search results, and suggest the most relevant resources (Maynard, Bontcheva, and Augenstein, 2017). Such interpretation of semantics results in the improved performance of search since it allows the systems to interpret user queries more than the key word matching. Ontology-based approaches are described by such examples as the possibility of mapping keywords with conceptual relationships that would help to get more precise results of semantic search (Tran, Cimiano, Rudolph, and Studer, 2007).

4.3. Recommendation Systems

Artificial intelligence-powered recommendation systems in LICs enhance the identification of the significant resources. Collaborative filtering algorithms involve the use of user behaviour, interests and preferences of the users to provide individual recommendations of research papers, books and e-resources (Li, Lu, and Xuefeng, 2005).

These systems enable contextual suggestions and this enables libraries to

show libraries the resources that suit their prevailing research interests and learning patterns. To promote the process of discovering and engaging with resources, recommendation engines based on AI have already been employed by such digital libraries as JSTOR and IEEE Xplore (Fry and Rich, 2011).

4.4. Smart Information Retrieval.

AI encourages the discovery of information that has superior search and contextualization. Intelligent search engines Intelligent search engines are AI-assisted search engines that apply machine learning models to analyze complex queries, ranking, and retrieve useful information on different mediums and domains (Doshi and Virparia, 2025).

Contextual search deep learning models allow LICs to learn user intent by way of interaction in order to improve on their subsequent performance (Boyle and Ravenscroft, 2012). Moreover, AI facilitates multi-lingual and cross-disciplinary retrieval that enables libraries to retrieve the diverse resources without taking into account the language and disciplinary boundaries (Maynard, Bontcheva, and Augenstein, 2017).

5. Artificial Intelligence Knowledge Management.

The implementation of the Artificial Intelligence (AI) within the Library and Information Centers (LICs) has increased

the knowledge management practices significantly. The metadata creation and predictive resource management as automated, and the service of intelligent references are the reasons why AI can present more organized, efficient, and personal information resources management systems based on large and heterogeneous information resources.

5.1. Metadata Generation: Automated Metadata Generation.

One of the principal issues in LICs is managing a great amount of content and indexing it and tagging it appropriately. Application of AI has revolutionized this discipline by computerizing the metadata generation in big data. Advanced indexing techniques, such as distributed and adaptive indexing, allow scaling and high-performance homogeneous and heterogeneous collection retrieval (Gani, Siddiqa, Shamshirband, and Hanum, 2016).

The AI-based automation can also be employed in order to reduce human interaction and errors that have undermined the effectiveness of cataloguing and classification used to be made in the past. The automated systems minimize misclassification and inconsistency of metadata creation through improved design and the organization working processes (Dalijono, Castro, Lowe, and Loher, 2006).

In addition to that, ontologies and knowledge graphs may be applied to provide the structured and semantically spoiled representations of knowledge. Knowledge graphs are the association of entities and make information easier to read by a machine, interoperable and raises resource discovery and retrieval (Tiwari, Al-Aswadi, and Gaurav, 2021).

5.2. Anticipatory Resource Management.

The resource management industry has also been transformed by AI with predictive services provided in terms of collecting planning and optimization. An example is the use of cloud-based analytics to predict and assign resources dynamically to ensure that the resources are used smoothly and low costs of operation are incurred (Balaji, Kumar, and Rao, 2018).

Optimizing inventory management and circulation policy are also optimized using AI methods. Simulations in optimization help the libraries to experiment and optimise the circulation policies so that they minimise bottlenecks and can match the resources needed with the demand (Schwartz, Wang, and Rivera, 2006).

As well, intelligent decision support systems (DSS) will enable librarians to find unutilized or expired materials earlier, therefore, inform de-acquisition, re-purpose, or replacement activities to

render collections useful and effective (Kaklauskas, 2014).

5.3. Intelligent Reference and Research Assistance.

AI will have a higher reference and research support in front-of-rest services. Artificially-intelligent chatbots are able to respond to the queries of users, to assist them in searching the literature and navigating them through the online libraries. Educational chatbots have been found to increase access and interaction by providing timely context-sensitive responses to students (Labadze, Grigolia, and Machaidze, 2023).

These two technologies, AI and digital assistants, enable the creation of personal learning and research directions and transform the proposals and recommendations to own interests and academical goals. Besides direct support, AI devices can be employed to enhance the research productivity, including literature reviews, synthesis of research findings, and identifying new avenues of research query. Since it serves as an illustration of business and management research, AI has been shown to affect the productivity and quality of the research outcome, which can be applied to academic libraries as well (Agarwal et al., 2025).

6. Ethical, Legal, and Social Implications.

Application of Artificial Intelligence (AI) in Library and Information Centers (LICs) has a transformative worth but it is connected with an overabundance of ethical, legal, and social concerns. These implications are associated with the privacy of data, intellectual property, and even socio-technical factors, which must be taken into account to ensure that AI technologies in knowledge management are employed in a responsible and just manner.

6.1. User Profiling and Data Privacy.

The work with the AI-based personalization of LICs depends on the analysis and processing of user information to a considerable extent. One-on-one recommendation systems can be much more user friendly by tailoring resources to users and have higher chances of surveillance, profiling and sensitive data abuse (Vallabhaneni, Perla, Regalla, and Kumari, 2024).

The use of user data should be increased, which means that the rules regarding data protection, such as the General Data Protection Regulation (GDPR) on consent, data minimization and the right to forget should be observed to the letter. Besides complying, libraries need to establish mechanisms to minimize the threat of algorithm biasing, as well as offer equal access to information to ensure that personalization does not base

its inequalities on the access to information (Vallabhaneni et al., 2024).

6.2. Intellectual Property/ Copyright.

The introduction of automated indexing and summarization software is a significant intellectual property issue. Not only do automated processes of subject indexing and abstracting reproduce and reuse the material to question the originality and ownership of the content, but, unintentionally, automated processes of content generation and distribution create and distribute content without the knowledge or permission of authors (Moens, 2002; Golub, 2021).

In addition, AI generated recommendations create more complexities of licensing and fair use. Libraries may become a subject of court disputes when AI tools recommend the addition of material not covered in the license granted, a practice observed in the process of repurposing otherwise copyrighted material without their consent. Consequently, the necessity to compromise efficiency and the need to honor the intellectual property systems to protect against the infringement and the ethical knowledge-sharing processes are in demand (Moens, 2002; Golub, 2021).

6.3. Socio-Technical Challenges

The implementation of AI in LICs is also socially and organizationally resistant. Employees and other users may also find automation to be threatening their human capabilities, and, therefore, they may not be ready to adopt the services of AI-based automation. There is a need however, to have a medium of automation where human proficiencies and machine performance are not substitutive but complementary (Camarinha-Matos, Rabelo, and Osório, 1997).

The second problem is that it is necessary to be certain about the transparency and interpretability of AI systems. Users and other staff will need to understand how AI tools make their decisions in order to develop trust and accountability. There is an increased emphasis on the need to ensure that AI design and implementation is explainable and systems transparency is mentioned to decrease user trust and institutional trust (Balasubramaniam, Kauppinen, Hiekkenen, and Kujala, 2022).

7. Knowledge Management in AI in the Future.

The future of AI within the Library and Information Centers (LICs) lies in the creation of the systems that are effective, not only in their efficiency but in their moral, transparent, and human-oriented. The new trends are possibly into the development of explainable AI (XAI)

tools that will enable the librarian and users to understand how automated suggestions and classifications are being made. Moreover, multimodal AI (text, images, audio, and video combination) will extend the functionality of the digital library, and the relatively quantity of knowledge resources will be more attractive, accessible, and inclusive. This kind of development means that in lieu of the fixed depositories of the past there should be dynamic systems of knowledge, where AI can help in continuous learning, the discovery and exploration of knowledge immediately and in research support specifically directed to the individual.

In the meantime, the implementation will be successful provided the issue of governance and trust-building is addressed. The future studies should be aimed at methods of responsible adoption of AI that would moderate the personalization and privacy, automation, and expertise of human beings. To develop equitable and sustainable systems, librarians, technologists, policymakers, and users will make joint efforts in designing the solutions based on AI. Lastly, the knowledge management AI will transform the library into not only the cottage of information, but also the player in the production and sharing of knowledge in the digital age.

Conclusion

A breakthrough in knowledge management, the implementation of artificial intelligence into Library and Information Centers, replaces the proven practice of cataloging, classification, and digitization as a fundamental part of the process. Artificial intelligence sources such as predictive analytics, knowledge graphs, semantic search, and recommendation systems improve knowledge of resources, the retrieval of resources, and individualized user experiences. Simultaneously, the ethical, legal, and social factors, including the privacy of information, transparency, fair access, and others, bring about the necessity of responsible adoption that will strike the right balance between automation and human work. Overcoming these issues, AI makes libraries vibrant, adaptive ecosystems where human judgement and machine intelligence interact to promote research, learning and spreading of knowledge in the digital era.

References

1. Agarwal, S., Kweh, Q. L., Jamali, D., Wider, W., Hossain, S. F. A., & Fauzi, M. A. (2025). How does artificial intelligence shape the productivity and quality of research in business studies? A systematic literature review and future research framework. *Discover Sustainability*, 6(1), 718.

2. Antoniou, J., & Tringides, O. (2023). *Effects of data overload on user quality of experience* (pp. 1-127). Springer.
3. Balaji, M., Kumar, C. A., & Rao, G. S. V. (2018). Predictive Cloud resource management framework for enterprise workloads. *Journal of King Saud University-Computer and Information Sciences*, 30(3), 404-415.
4. Balasubramaniam, N., Kauppinen, M., Hiekkonen, K., & Kujala, S. (2022, March). Transparency and explainability of AI systems: ethical guidelines in practice. In *International working conference on requirements engineering: foundation for software quality* (pp. 3-18). Cham: Springer International Publishing.
5. Boyle, T., & Ravenscroft, A. (2012). Context and deep learning design. *Computers & Education*, 59(4), 1224-1233.
6. Camarinha-Matos, L. M., Rabelo, R., & Osório, L. (1997). Balanced automation. In *Computer-Assisted Management and Control of Manufacturing Systems* (pp. 376-414). London: Springer London.
7. Dalijono, T., Castro, J., Löwe, K., & Löher, H. J. (2006). Reducing human error by improvement of design and organization. *Process Safety and Environmental Protection*, 84(3), 191-199.
8. Doshi, M., & Virparia, P. (2025, February). AI for Intelligent Data Retrieval. In *International Conference on Advances in Smart Computing and Applications* (pp. 228-245). Cham: Springer Nature Switzerland.
9. Fry, A., & Rich, L. (2011). Usability testing for e-resource discovery: How students find and choose e-resources using library web sites. *The journal of academic librarianship*, 37(5), 386-401.
10. Gani, A., Siddiq, A., Shamshirband, S., & Hanum, F. (2016). A survey on indexing techniques for big data: taxonomy and performance evaluation. *Knowledge and information systems*, 46(2), 241-284.
11. Golub, K. (2021). Automated subject indexing: An overview. *Cataloging & Classification Quarterly*, 59(8), 702-719.
12. Golub, K. (2021). Automated subject indexing: An overview. *Cataloging & Classification Quarterly*, 59(8), 702-719.
13. Järvelin, K., & Vakkari, P. (1993). The evolution of library and information science 1965-1985: A content analysis of journal articles. *Information processing & management*, 29(1), 129-144.
14. Jeelani, I., Han, K., & Albert, A. (2018). Automating and scaling

personalized safety training using eye-tracking data. *Automation in Construction*, 93, 63-77.

15. Kaklauskas, A. (2014). Intelligent decision support systems. In *Biometric and intelligent decision making support* (pp. 31-85). Cham: Springer International Publishing.

16. Labadze, L., Grigolia, M., & Machaidze, L. (2023). Role of AI chatbots in education: systematic literature review. *International journal of Educational Technology in Higher education*, 20(1), 56.

17. Li, Y., Lu, L., & Xuefeng, L. (2005). A hybrid collaborative filtering method for multiple-interests and multiple-content recommendation in E-Commerce. *Expert systems with applications*, 28(1), 67-77.

18. Lund, B., & Agbaji, D. (2018). Use of Dewey decimal classification by academic libraries in the United States. *Cataloging & classification quarterly*, 56(7), 653-661.

19. Maynard, D., Bontcheva, K., & Augenstein, I. (2017). *Natural language processing for the semantic web*. San Rafael: Morgan & Claypool.

20. McCracken, E. (2008). Description of and Access to Electronic Resources (ER) Transitioning into the Digital Age. *Collection Management*, 32(3-4), 259-275.

21. Moens, M. F. (2002). *Automatic indexing and abstracting of document texts*. Boston, MA: Springer US.

22. Nandzik, J., Litz, B., Flores-Herr, N., Löhden, A., Konya, I., Baum, D., ... & Ndjiki-Nya, P. (2013). CONTENTUS – technologies for next generation multimedia libraries: Automatic multimedia processing for semantic search. *Multimedia tools and applications*, 63(2), 287-329.

23. Perrault, A. H. (1999). National collecting trends: Collection analysis methods and findings. *Library & Information Science Research*, 21(1), 47-67.

24. Pradhan, S., Tripathy, S., & Matam, R. (2024). Towards optimal edge resource utilization: Predictive analytics and reinforcement learning for task offloading. *Internet of Things*, 26, 101147.

25. Randtke, W. (2013). Automated metadata creation: possibilities and pitfalls. *The Serials Librarian*, 64(1-4), 267-284.

26. Schwartz, J. D., Wang, W., & Rivera, D. E. (2006). Simulation-based optimization of process control policies for inventory management in supply chains. *Automatica*, 42(8), 1311-1320.

27. Terras, M. M. (2011). The rise of digitization. *Digitisation perspectives*, 3-20.
28. Tiwari, S., Al-Aswadi, F. N., & Gaurav, D. (2021). Recent trends in knowledge graphs: theory and practice. *Soft Computing*, 25(13), 8337-8355.
29. Tran, T., Cimiano, P., Rudolph, S., & Studer, R. (2007, November). Ontology-based interpretation of keywords for semantic search. In *International semantic web conference* (pp. 523-536). Berlin, Heidelberg: Springer Berlin Heidelberg.
30. Vallabhaneni, A. S., Perla, A., Regalla, R. R., & Kumari, N. (2024). The power of personalization: AI-driven recommendations. In *Minds Unveiled* (pp. 111-127). Productivity Press.